An algebraic approach to subframe logics. Intuitionistic case

نویسندگان

  • Guram Bezhanishvili
  • Silvio Ghilardi
چکیده

We develop duality between nuclei on Heyting algebras and certain binary relations on Heyting spaces. We show that these binary relations are in 1–1 correspondence with subframes of Heyting spaces. We introduce the notions of nuclear and dense nuclear varieties of Heyting algebras, and prove that a variety of Heyting algebras is nuclear iff it is a subframe variety, and that it is dense nuclear iff it is a cofinal subframe variety. We give an alternative proof that every (cofinal) subframe variety of Heyting algebras is generated by its finite members. c © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cofinal Stable Logics

We generalize the (∧,∨)-canonical formulas of [3] to (∧,∨)-canonical rules, and prove that each intuitionistic multi-conclusion consequence relation is axiomatizable by (∧,∨)-canonical rules. This provides an intuitionistic analogue of [6], and is an alternative of [19]. It also yields a convenient characterization of stable superintuitionistic logics introduced in [3]. The (∧,∨)-canonical form...

متن کامل

An Algebraic Approach to Subframe Logics. Modal Case

We prove that if a modal formula is refuted on a wK4-algebra (B, ), then it is refuted on a finite wK4-algebra which is isomorphic to a subalgebra of a relativization of (B, ). As an immediate consequence, we obtain that each subframe and cofinal subframe logic over wK4 has the finite model property. On the one hand, this provides a purely algebraic proof of the results of Fine and Zakharyasche...

متن کامل

Canonical formulas via locally finite reducts and generalized dualities

Axiomatizability, the finite model property (FMP), and decidability are some of the most frequently studied properties of non-classical logics. One of the first general methods of axiomatizing large classes of superintuitionistic logics (si-logics for short) was developed by Jankov [8]. For each finite subdirectly irreducible Heyting algebra A, Jankov designed a formula that encodes the structu...

متن کامل

Stable formulas in intuitionistic logic

NNIL-formulas are propositional formulas that do not allow nesting of implication to the left. These formulas were introduced in [16], where it was shown that NNIL-formulas are (up to provable equivalence) exactly the formulas that are preserved under taking submodels of Kripke models. In this paper we show that NNIL-formulas are up to frame equivalence the formulas that are preserved under tak...

متن کامل

AN ALGEBRAIC STRUCTURE FOR INTUITIONISTIC FUZZY LOGIC

In this paper we extend the notion of  degrees of membership and non-membership of intuitionistic fuzzy sets to lattices and  introduce a residuated lattice with appropriate operations to serve as semantics of intuitionistic fuzzy logic. It would be a step forward to find an algebraic counterpart for intuitionistic fuzzy logic. We give the main properties of the operations defined and prove som...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 147  شماره 

صفحات  -

تاریخ انتشار 2007